首页> 外文OA文献 >Numerical Implementation of Streaming Down the Gradient: Application to Fluid Modeling of Cosmic Rays and Saturated Conduction
【2h】

Numerical Implementation of Streaming Down the Gradient: Application to Fluid Modeling of Cosmic Rays and Saturated Conduction

机译:梯度流的数值实现:应用于   宇宙射线和饱和传导的流体模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The equation governing the streaming of a quantity down its gradientsuperficially looks similar to the simple constant velocity advection equation.In fact, it is the same as an advection equation if there are no local extremain the computational domain or at the boundary. However, in general when thereare local extrema in the computational domain it is a non-trivial nonlinearequation. The standard upwind time evolution with a CFL-limited time stepresults in spurious oscillations at the grid scale. These oscillations, whichoriginate at the extrema, propagate throughout the computational domain and areundamped even at late times. These oscillations arise because of unphysicallylarge fluxes leaving (entering) the maxima (minima) with the standardCFL-limited explicit methods. Regularization of the equation shows that it isdiffusive at the extrema; because of this, an explicit method for theregularized equation with $\Delta t \propto \Delta x^2$ behaves fine. We showthat the implicit methods show stable and converging results with $\Delta t\propto \Delta x$; however, surprisingly, even implicit methods are not stablewith large enough timesteps. In addition to these subtleties in the numericalimplementation, the solutions to the streaming equation are quite novel:non-differentiable solutions emerge from initially smooth profiles; thesolutions show transport over large length scales, e.g., in form of tails. Thefluid model for cosmic rays interacting with a thermal plasma (valid at spacescales much larger than the cosmic ray Larmor radius) is similar to theequation for streaming of a quantity down its gradient, so our method will findapplications in fluid modeling of cosmic rays.
机译:表面上控制量沿其梯度向下流动的方程看起来类似于简单的等速平流方程。实际上,如果在计算域或边界处没有局部极值,则该方程与平流方程相同。但是,通常,当计算域中存在局部极值时,这是一个非平凡的非线性方程。具有CFL限制时间步长的标准迎风时间演变会导致网格规模的杂散振荡。这些起源于极值的振荡在整个计算域中传播,甚至在较晚的时间都没有衰减。这些振荡是由于使用标准CFL限制显式方法离开(输入)最大值(最小值)的物理通量过大而产生的。等式的正则化表明它在极值处具有扩散性。因此,对于带有$ \ Delta t \ propto \ Delta x ^ 2 $的正则方程的显式方法表现良好。我们证明,隐式方法在$ \ Delta t \ propto \ Delta x $;下显示稳定和收敛的结果。然而,令人惊讶的是,即使隐式方法在足够长的时间步长下也不稳定。除了数值实现中的这些细微之处外,流方程的解还很新颖:不可微解从最初的平滑轮廓中产生;该解决方案显示了在大范围尺度上的运输,例如以尾巴的形式。宇宙射线与热等离子体相互作用的流体模型(在比宇宙射线拉莫尔半径大得多的空间尺度上有效)类似于沿其梯度向下流动一定量的方程,因此我们的方法将在宇宙射线的流体建模中找到应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号